41 research outputs found

    Can sulphur improve the nutrient uptake, partitioning, and seed yield of sesame?

    Get PDF
    Sulphur (S) is considered to improve the nutrient uptake of plants due to its synergistic relationship with other nutrients. This could ultimately enhance the seed yield of oilseed crops. However, there is limited quantitative information on nutrient uptake, distribution, and its associated impacts on seed yield of sesame under the S application. Thus, a two-year field study (2018 and 2019) was conducted to assess the impacts of different S treatments (S-0 = Control, S-20 = 20, S-40 = 40, and S-60 = 60 kg ha(-1)) on total dry matter production, nitrogen, phosphorus, potassium, S uptake and distribution at the mid-bloom stage and physiological maturity. Furthermore, treatment impacts were studied on the number of capsules per plant, number of seeds per capsule, thousand seed weight, and seed yield at physiological maturity in sesame. Compared to S-0, over the years, treatment S-40 significantly increased the total uptake of nitrogen, phosphorus, potassium, and S (by 13, 22, 11% and 16%, respectively) at physiological maturity, while their distribution by 13, 36, 14, and 24% (in leaves), 12, 15, 11, and 15% (in stems), 15, 42, 18, and 10% (in capsules), and 14, 22, 9, and 15% (in seeds), respectively. Enhanced nutrient uptake and distribution in treatment S-40 improved the total biomass accumulation (by 28%) and distribution in leaves (by 34%), stems (by 27%), capsules (by 26%), and seeds (by 28%), at physiological maturity, as compared to S-0. Treatment S-40 increased the number of capsules per plant (by 13%), number of seeds per capsule (by 11%), and thousand seed weight (by 6%), compared to S-0. Furthermore, over the years, relative to control, sesame under S-40 had a higher seed yield by 28% and enhanced the net economic returns by 44%. Thus, our results suggest that optimum S level at the time of sowing improves the nutrient uptake and distribution during the plant lifecycle, which ultimately enhances total dry matter accumulation, seed yield, and net productivity of sesame

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Investigations on growth and P uptake characteristics of maize and sweet corn as influenced by soil P status : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph. D.) (Plant & soil science), Institute of Natural Resources, Massey University, Palmerston North, New Zealand

    Get PDF
    Despite being different cultivars of the same plant species (Zea mays L.), maize and sweet corn have contrasting P fertiliser recommendations in New Zealand, that are reflected in different target Olsen P values of 10-15 mg P/kg soil for optimum maize growth and 26-35 mg P/kg soil for optimum sweet corn growth. Three key hypotheses were developed in this study to explain why these differences may exist: i) maize and sweet corn differ in their responsiveness to P fertiliser i.e. maize is more internally P efficient and requires less P than sweet corn to grow, ii) both cultivars differ in external P efficiency i.e. their ability to take P up from soil iii) both cultivars differ in external P efficiency because they have different root system structure. Two field experiments evaluated the growth and yield responses of maize and sweet to different rates of P fertiliser application. The first experiment was conducted in Hawke's Bay (2001-02) and second in the Manawatu (2002-03) with P application rates of 0, 100 and 200 kg P/ha in the Hawke's Bay and 0, 15 and 70 kg P/ha in the Manawatu. Both experiments were conducted on soils of low available P status. The Olsen P test values of 13 mg P/kg soil in the Hawke's Bay and 11 mg P/kg soil in the Manawatu were far below the recommended values for sweet corn (25-35 mg P/kg soil). In both experiments and across all P treatments maize produced significantly higher dry matter yields than sweet corn during all sampling stages. In the Hawke's Bay experiment at 100 days after sowing (DAS), the maize (87719 plants/ha, 20.9 t/ha) produced 43% more dry matter than sweet corn (71124 plants/ha, 14.6 t/ha), whereas, in the Manawatu experiment (140 DAS), maize (71124 plants/ha, 15.2 t/ha) had a 39% higher dry matter yield than sweet corn (71124 plants/ha, 10.9 t/ha). In both the field experiments, the sweet corn fresh cob yield of 27 and 28 t/ha in the Hawke's Bay and the Manawatu regions and maize grain yields of 16 and 10 t/ha, respectively, were within the range of the reported commercial yields for each region. In both experiments, the P fertiliser application raised the soil P status (Olsen P test values) but caused no significant increases in either maize or sweet corn yields (total dry matter, sweet corn fresh cob or maize grain). Commercially viable yields of both cultivars were able to be achieved without P fertiliser application with Olsen P soil test in the range of 10-15 mg P/kg soil. Sweet corn reached harvestable maturity at 115 DAS in the Hawke's Bay and 140 DAS in the Manawatu experiments. By this time maize had produced 4-6 t/ha more total dry matter yield than sweet corn, yet maize and sweet corn had achieved similar total P uptake (32-37 kg P/ha at 100 DAS in the Hawke's Bay and 18-19 kg P/ha at 140 DAS in the Manawatu). At silking (after 75 DAS in the Hawke's Bay and approximately 110 DAS in the Manawatu), both cultivar's total leaf P concentrations (0.21-0.25%) were within the sufficiency range values for maize crops in New Zealand (0.18-0.33 %). Maize, however was more internally P efficient growing more dry matter per unit P taken up, which was more noticeable in the drier season. Fertiliser P application increased P uptake with both cultivars under moist conditions in the Hawke's Bay experiment (2001-02). However, the dry conditions in the Manawatu (2002-03) limited P uptake as well as restricted dry matter yields with both cultivars. Further, there were no significant differences between maize and sweet corn P uptake efficiency (kg P/kg root) despite significant differences in the root system structure (biomass) for both cultivars at all stages, which lead to different temporal patterns of P uptake. The lack of maize yield response to fertiliser P in both field experiments is consistent with the New Zealand recommendations for growing a maize grain crop (because soil Olsen P was in the range of 10-15 mg P/kg). However, the lack of sweet corn yield response in both field experiments does not support the New Zealand recommendations for growing sweet corn (which assume optimal Olsen P values are 26-35 mg P/kg)

    Analysis of manufacturing supply chains using system dynamics and multi-objective optimization

    No full text
    Supply chains are in general complex networks composed of autonomous entities whereby multiple performance measures in different levels, which in most cases are in conflict with each other, have to be taken into account. Hence, due to the multiple performance measures, supply chain decision making is much more complex than treating it as a single objective optimization problem. Thus, the aim of the doctoral thesis is to address the supply chain optimization problem within a truly Pareto-based multi-objective context and utilize knowledge extraction techniques to extract valuable and useful information from the Pareto optimal solutions. By knowledge extraction, it means to detect hidden interrelationships between the Pareto solutions, identify common properties and characteristics of the Pareto solutions as well as discover concealed structures in the Pareto optimal data set in order to support managers in their decision making. This aim is addressed through the SBO-framework where the simulation methodology is based on system dynamics (SD) and the optimization utilizes multi-objective optimization (MOO). In order to connect the SD and MOO software, this doctoral thesis introduced a novel SD and MOO interface application which allow the modeling and optimization applications to interact. Additionally, this thesis work also presents a novel SD-MOO methodology that addresses the issue of curse off dimensionality in MOO for higher dimensional problems and with the aim to execute supply chain SD-MOO in a computationally cost efficient way, in terms of convergence, solution intensification and accuracy of obtaining the Pareto-optimal front for complex supply chain problems. In order to detect evident and hidden structures, characteristics and properties of the Pareto-optimal solutions, this work utilizes Parallel Coordinates, Clustering and Innovization, which are three different types of tools for post-optimal analysis and facilitators of discovering and retrieving knowledge from the Pareto-optimal set. The developed SD-MOO interface and methodology are then verified and validated through two academic case studies and a real-world industrial application case study. While not all the insights generated in these application studies can be generalized for other supply-chain systems, the analysis results provide strong indications that the methodology and techniques introduced in this thesis are capable to generate knowledge to support academic SCM research and real-world SCM decision making, which to our knowledge cannot be performed by other methods

    The effects of tillage practices on soil microbial biomass and CO2 emission : a thesis presented in partial fulfilment of the requirements for the degree of Master of Applied Science in Agricultural Engineering at Institute of Technology and Engineering, Massey University

    Get PDF
    Conversion of permanent pasture land to forage crop rotation by conventional tillage and reversion to pasture, for recovery of nutrients is a common practice in New Zealand. Because of their effects on soil physical, chemical and biological degradation, and the extent to which these soil management practices are sustainable is not fully known. To evaluate short- and long-term impact of tillage induced changes in soil physical, chemical and biological properties, a quad replicated field experiment was established at Massey University, Turitea campus in 1995. Permanent pasture land was converted to a double crop rotation using conventional (CT) and no-tillage (NT) practices on the Ohakea silt loam soil. The overall aim of this research programme is to develop a sustainable land use management for pasture-based arable cropping to suit local farming conditions. The present study investigated the effects of CT and NT practices on soil biological status and CO2 emission. The test crops were summer fodder maize (Zea mays L.) and winter oats (Avena sativa). An adjacent permanent pasture (PP) was used as a control. Soil samples were collected at 0-100 mm in summer, 0-50 and 50-100 mm depths in autumn and winter before or after crop harvest. The 'fresh' field moist, sieved samples were used for the measurement of microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP) and basal soil respiration. Earthworm population and biomass were extrusion with formaldehyde. Field CO2 emission was measured at 3-4 weeks interval for one year. After two years of continuous cropping, overall nutrients status (organic C, total N and total P) in NT remained similar to that in PP. In CT the nutrient levels were significantly lower. Earthworm population and live mass were also significantly lower in CT as compared to PP and NT treatments. However, there was no differences in plant establishment, crop dry matter yield, soil temperature and soil pH (0-100 mm depth) between the two tillage (NT and CT) systems. Higher levels of MBC, MBN and MBP were found in NT as compared with CT at 0-100 mm depth throughout the three seasons studied. When samples were analysed separately from two depths i.e. 0-50 and 50-100 mm, the microbial biomass contents were higher in surface soil (0-50 mm depth) as compared with 50-100 mm depth. Microbial biomass contents at 50-100 mm layer did not differ significantly among the three treatments. At 0-100 mm depth, MBC declined by 29%, MBN by 32% and MBP by 33% with two years (4 crops) of CT. Such a decline in microbial biomass is an early indication of future decline in soil organic matter. Soil organic matter (total C) had also declined by 22% (from 35,316 to 27,608 kg ha-1) with CT. No such decline occurred either in MBC, MBN and MBP or organic matter with NT. Basal soil respiration data indicated that microbial biomass activity in CT was 38% lower than in NT at 0-50 mm depth. However, at 50-100 mm depth, the activity was 25% higher in CT as compared with NT. Metabolic quotient (qCO2) did not differ among the three treatments at 0-50 and 50-100 mm soil depths. Field CO2 emission from PP was significantly higher as compared to NT and CT treatments. The two tillage practices did not influence the CO2 emission measured both shortly after tillage and during crop growth period. The annual estimated carbon loss through CO2 emission was 34 t C ha-1 year-1 in PP, 24 t C ha-1 year in NT and 21 t C hayear in CT treatment. Field CO emission was generally higher in summer and autumn as compared to winter and spring. Overall, this study, which spanned two cropping seasons, clearly showed that 2 years cropping with CT resulted in a decline in soil biological status and organic matter. The decline in soil biological status is likely to affect crop yields in CT over the longer period. Conversely, NT cropping was efficient in sustaining soil biological status and organic matter. NT had similar influence on soil biological status as clover based PP during a short-period. Therefore, it is concluded that NT may be used as an effective tool to enhance soil productivity while promoting agricultural sustainability

    Strategy evaluation using system dynamics and multi-objective optimization for an internal supply chain

    No full text
    System dynamics, which is an approach built on information feedbacks and delays in the model in order to understand the dynamical behavior of a system, has successfully been implemented for supply chain management problems for many years. However, research within in multi-objective optimization of supply chain problems modelled through system dynamics has been scares. Supply chain decision making is much more complex than treating it as a single objective optimization problem due to the fact that supply chains are subjected to the multiple performance measures when optimizing its process. This paper presents an industrial application study utilizing the simulation based optimization framework by combining system dynamics simulation and multi-objective optimization. The industrial study depicts a conceptual system dynamics model for internal logistics system with the aim to evaluate the effects of different material flow control strategies by minimizing total system work-on-process as wells as total delivery delay

    Investigating Maintenance Performance : A Simulation Study

    No full text
    Maintenance can be performed in multiple procedures, and it is hard to justify investments in preventive work. It is a complex equation between the inherent complexity of maintenance and its tight dependencies with production, but also the aspect of direct cost and consequential costs from activities. A model is presented that quantify dynamics of maintenance performance in order to enable a systems analysis on the total of consequences from different strategies. Simulation offers experimenting and learning on how performance is generated. The model is based on parts of previous research on maintenance modelling, system dynamics, maintenance theory, and mapping of practical information flows in maintenance. Two experiments are presented that both take off from a reactive strategy of maintenance performance, and implement two different strategies for preventive maintenance. Using the model enriches the analysis on how the aspects of maintenance performance work together with different maintenance strategies

    Education of the Future : Learnings and Experiences from Offering Education to Industry Professionals

    No full text
    Digitalization is forcing the industry to rethink current practices in all business domains, pushing for a digital transformation of business and operations at a high rate and, thus, paving the way for new business models and making others redundant. For small and medium-sized companies (SME), in particular, it is an enormous challenge to keep up with the pace of technological development. Several initiatives have argued the industry’s need for continuous digitalization, innovation, transformation ability, and future skills and competencies development. However, the advancement of the Swedish industry in this area has been uneven, where larger organizations have begun their digital transformation journey to some extent, but SMEs risk falling behind. In addition to the technological transformation, the challenges regarding the industries’ skills supply need to be solved, where a workforce with the right competencies, knowledge, and skill sets are equally, if not more, important for remaining competitive. One of the key elements to face these challenges in the companies will be to recruit knowledgeable employees or re-skill the existing ones. Efficient access to relevant knowledge and skills is still a major concern for companies that will surely affect their competitiveness for a long time to come. This paper elaborates on the opportunities and challenges that Swedish universities face in the context of lifelong learning and education for industry professionals. The paper presents results and experiences gained from a lifelong learning project for industry professionals at the University of Skövde in collaboration with ten industry partners. The results from the project show that in addition to pedagogical methods, current structures and policies within academia need to be further developed to effectively serve industry professionals. The paper also presents a concept of education for industry professionals in the lifelong learning context based on the results and experience gained from the project.CC BY-NC 4.0Corresponding Author: [email protected] authors gratefully acknowledge the Swedish Knowledge Foundation for funding the projects Virtual Factory and WISER as part of their Graduate Professional Development projects (Expertkompetens), which strengthen education through the development of flexible, research-linked courses at advanced level for working professionals.Virtual FactoryWISE
    corecore